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Higgs-Field Gravity within the Standard Model 
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Within the framework of the Glashow-Salam-Weinberg model it is shown that 
the Higgs field mediates an attractive scalar gravitational interaction of Yukawa 
type between the elementary particles which become massive by the ground state 
of the Higgs field after symmetry breaking. 

1. I N T R O D U C T I O N  

Until now the origin of  the mass of  the elementary particles has been 
unclear. Usually mass is introduced by the interaction with the Higgs field; 
however, in this way the mass is not explained, but only reduced to the 
parameters  of  the Higgs potential,  whereby the physical meaning of  the 
Higgs field and its potential  remains nonunderstood.  

On the other hand, there exists an old idea of  Einstein, the so-called 
"principle of  relativity of  inertia," according to which mass should be 
produced by the interaction with the gravitational field (Einstein, 1917). 
Einstein argued that the inertial mass is only a measure for the resistance 
of  a particle against the relative acceleration with respect to other particles; 
therefore, within a consequent theory of  relativity, the mass of  a particle 
should be originated by interaction with all other particles of  the universe, 
whereby this interaction should be the gravitational one which couples to 
all particles, i.e., to their masses or energies. He even postulated that the 
value of the mass of  a particle should go to zero if one puts the particle at 
an infinite distance from all others. 

This fascinating idea was not very successful within Einstein's theory 
of  gravity, i.e., general relativity, although it caused Einstein to introduce 
the cosmological constant in order to construct a cosmological model with 
finite space, and led Brans and Dicke (1961) to develop their scalar-tensor 
theory. But an explanation of  the mass has not followed from it until now. 
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In this paper we will show that a successful Higgs-field mechanism 
lies in the direction of Einstein's idea of producing mass by gravitational 
interaction; we find that the Higgs field as source of the inertial mass is 
related to gravity (Dehnen et al., 1990), i.e., it mediates a scalar gravitational 
interaction between the massive particles, however, of  Yukawa type. This 
results from the fact that the Higgs field itself becomes massive after 
symmetry breaking. On the other hand, an estimation of  the coupling 
constants shows that it may be improbable that this Higgs-field gravity can 
be identified with any experimental evidence. Perhaps its applicability lies 
beyond the scope of present experimental capabilities. 

2. GRAVITATIONAL ACTION OF THE HIGGS FIELD 

In a previous publication (Dehnen et al., 1990) we have shown 
approximatively the gravitational interaction of the Higgs field between 
massive fermions. In the present paper we extend our investigation in an 
exact manner to fermions and bosons. Due to this reason we perform our 
calculations within the well-established Glashow-Salam-Weinberg model 
of electroweak interaction based on the localized group S U ( 2 ) x  U(1), 
taking into account all families of elementary particles. For this we start 
with the following definitions (spinor and isospin indices are suppressed): 

= oq ' , m = l , q  (2.1) 

represents the spinorial wave functions of the ith family (i = 1 , . . . ,  Nf), 
wherein 

~g l i I. 1. = OL + Ok (2.2) 

is the leptonic part with 

and 

i (2.2a) , (v~'~ O~A=eR OL = \ e 'L] '  

ffj  q i q" = O/j + O~ (2.3) 

means the part of the quarks with 

(% 
= \a2/' 

and 

(UiR] (2.3a) 

d ' i= Uic)jd j (2.3b) 
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as the Cabibbo transformed quark wave functions. Here the left-handed 
fermions ~ [  and t ~  are doublets with respect to the localized group SU(2),  
whereas the right-handed ones tp~ and ~ are singlets. Correspondingly, 
the covariant derivatives take the form 

1. 
D,~,.R L = (o~ + "  ~ ~" ~ 

D ; , ~  = (a;, + "  a 1. q. ig2 W,~ ~'~ +~zg~B,~)~,y 

DxO~ = (Ox - iglBx)q/k 

D~(U~) f, (o~ +~ie,,B~)u'~ 
DxO~ = dR = [ ( 0 x - ~ t g l B x l d R  ~" " 

(2.4) 

Herein 7 ~ are the generators of  the group SU(2),  W~ represent the corre- 
sponding gauge potentials, and Ba is the U(1) gauge potential with gl and 
g2 as gauge-coupling constants. The covariant gauge-field strengths are given 
by the commutators 

1 a r~(2)  '-~(2)~, = F(2)~,ra = "7-- [/-),~ , D ~  )] 
tg= 

(2.5) 
I 

Lo.  , O~ )] 
tga 

[(1) and (2) refer to the groups U(1) and SU(2),  respectively]. Here Y is 
the U(1) generator of the weak hypercharge in the different representations 
according to (2.4), where we follow the notation of Sailer (1985) and not 
of  Becher et al. (1981). Finally, we introduce a scalar Higgs field ~b belonging 
to the fundamental representation of SU(2);  its covariant derivative reads 

Dx& = (0x +"  " 1 .  lg2 Wx ra +~lglBx)~b (2.6) 

Herewith we construct the gauge invariant minimally coupled Lagrange 
density: 

L = L(O)  + L ( F )  + L ( 6 )  (2.7) 

where 

L(q/) ~h - ~ ,.. - A m. = 4'R,mY D,~R'] +h.c.  "-~ [OL~,Y D,~bL' + (2.7a) 

L ( F )  = h ~ x~ x~ - 16---~ (F(2)x~F(z)a + F(a)x~F(1)) (2.7b) 

and 

2 

L(gb)=l (Dxq~)tDX(b_~__ t ~ k-  t . . . .  j ~b ~b-~. l (~btq~)2-  ORm,q~ Xn/~bL--kh.c. (2.7c) 
2 2  
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(~tL 2, / ~ ,  k are real parameters of the Higgs potential and ~ ,  is the Yukawa 
coupling matrix, see appendix). The field equations following from Hamil- 
ton's action principle result in the wave equations for the left- and right- 
handed fermions, 

//~ m k A . ~ m  rl iT D~OL'---~ X,j '&O~=O (2.8a) 

m k *^m n iy~D.qSR ' - ~  q~ x , /O~ = 0 (2.8b) 

in the Yang-Mills equations 

= O~F(2)~ - g2eob~W~,F(2) - 4~J(2)~ (2.9a) 
#.*A - -  ,A Oj, F(~) - 4~'J(1) (2.9b) 

(e~b~ is the Levi-Civita symbol) with the current densities 

J~'2)o ~- ~< _ , . + .  g2 = g2qSLm,Y Z~qSL' ~-s  [th*'r<,DSiq$ - (D"&)*~'<,~] (2.10a) 

- x m,  . gl 
J~,) = gl[ Y6~L~,r"x" m, + ,eL  YCSR~,3: OR ]+  Z~-~ [ @*D'~4b- (D~4~)*4b ] 

(2.lOb) 

and in the Higgs-field equation 

D~D~'4J + ~2 4J +6 ( 4 /  dJ )da = -2kO-m,,,:~'r ~ (2.11) 

Obviously the current densities separate into two gauge-eovariant parts 
j~2),(q~) a n d  j(X2)a(ff) ) as well as j~l)(O) a n d  j~l)(~b). In a similar way the 
gauge-invariant canonical energy-momentum tensor consists of three gauge- 
invariant parts: 

T~ = T~(O)+ T~(F)+ T~(q~) (2.12) 

with 

- -  t/. m 

,, r ,o<: ,  =~. 1 l o<t3 
T~(F) = -4---~ 7 <'A" (2):t~--(2):] 

1 ,..,. 18,v<,,o,~V<,,.) ] + t,~,>,,,..V(,,-~ 

(2.12a) 

(2.12b) 
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and 

1 I 
] (D~b)t D~b -t- (D~b)t  Ox~b V~(6) =5 

With respect to the field equations, the conservation laws for energy and 
momentum of the whole system of fields are valid, 

o , r ~  = 0 (2.13) 

In view of analyzing the interaction caused by the Higgs field, we 
investigate first the equation of motion for the expectation value of the 
4-momentum of the fermionic matter fields (0 fields) and the gauge fields 
(F  fields). From (2.12) and (2.13) one finds immediately, neglecting surface 
integrals at spacelike infinity, 

Oo f [ T~ T~ d3x = -  I O~T~(dp) d3x (2.14) 

Insertion of T~(~b) according to (2.12c) and elimination of the second 
derivatives of the Higgs field by the field equation (2.11) results, with the 
use of the definitions of the field strengths F(I),~ and F(~),~ in 

~ [r~(~)+ ~(F)] d~x 

I ~ -- Am, nj -- 

+~ g,F(,),~{q~*D"4~-(D"4~)*4~} dax (2.15) 

The right-hand side represents the expectation value of the 4-force, which 
changes the 4-momentum of the 0 fields and of the F fields with time. 
However, the latter expression can be rewritten with the use of the field 
equations (2.9a) and (2.9b) as follows: 

O.T~(F) = h[F'~2),~x{j~2),,(~b) +j~'2)a(~b)}+ F(1),o.x{j'~i)(~) +J~l)(~)}] (2.16) 

Herewith one obtains instead of (2.15) 

I I 0 rOa(~b ) d3 x = .h[F(2)~xj(2)a(lfi)_bF(1)~;tj(1)(lfi)] d3 x 
ot 

I , -  ^m ns+ - :~tm. nj +k [(D~4,) ~,x , ;OL ~,L~, .~ ORD~6]d3x (2.17) 
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where on the right-hand side we have the 4-force of  the gauge fields and 
the Higgs field, both acting on the matter field and changing its 4-momentum. 
Evidently, the gauge field strengths couple to the gauge currents j~)a(@) 
and j~)(@), i.e., to the gauge-coupling constants gl and g2 according to 
(2.10a) and (2.10b), whereas the Higgs field strength (gradient of  the Higgs 
field) couples to the fermionic mass parameter k only (Becher et al., 1981). 
This fact points to a gravitational action of  the scalar Higgs field. 

3. FIELD EQUATIONS OF HIGGS GRAVITY 

For demonstrating the gravitational interaction explicitly, we first per- 
form the spontaneous symmetry breaking, because in the case of  a scalar 
gravity only massive particles should interact. 2 For this 2 < 0 must be valid, 
and according to (2.11) and (2.12c), the ground state tho of  the Higgs field 
is defined by 

tho*qSo = v 2= -6/x2 (3.1) 
A 

which we resolve as 

with 

qb o = v N  (3.2) 

N * N  = 1, OxN = 0 (3.2a) 

The general Higgs field ~b is different from (3.2) by a local unitary 
transformation: 

with 

fb = p U N ,  U t U  = 1 (3.3) 

~b*~b = p 2 , p =  v ( l + ~ )  (3.3a) 

where ~ represents the real-valued excited Higgs field. Now we use the 
possibility of  a unitary gauge transformation which is inverse to (3.3): 

~ ,=  U-I~ ,  i~'= u-l~.t, ~7~, = U - I ~ . v U  (3.4) 

so that 

q~' = p N  (3.4a) 

2The only possible source of a classical scalar gravity is the trace of the energy-momentum 
tensor. 
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is valid, and perform in the following all calculations in the gauge 
(3.4) (unitary gauge). 

Using (3.2)-(3.4a), the field equations (2.8a)-(2.11) take the form, 
avoiding the strokes introduced in (3.4), 

�9 ,, ,, 1 .  ^ , .  . 
zy D ~ 0 L ' - ~  (1 + ~0)m,/~b~ = 0 (3.5a) 

_ 1 ( 1 +  Am, . j _  q~) rn.j q'L - 0 (3.5b) 

(1 + W + "] = (3 .6a)  

.A 1 . 2 2 0~, F(1)+~-i (1 + ~o) [M(1,2)~ W ax + M~I)B x] = 47rj~l)(qJ) (3.6b) 

M 2 1 _~222 (3 ~,2 _{_ r 3) 

1 [ [ ~  . . . .  - 
= - - -  O ~  + tPg,,, ,m I)2 Lmi n~ nj i 

1 2 ,, "] 
4~'h {M(2) ,a ,W~,WbX+2M~.2)aW~B~'+M~)BxBa}(I+~o)J  (3.7) 

wherein 

M 2 = - -2~2h  2 (I.6 2 < 0) (3.7a) 

is the square of the mass of the Higgs field (~0 field) and 

A mi 1 k " ~ Tt Am..q_ ^trn i ~ ~x rn,j =~  vUv x . /  x , ,  iv) (3.8) 

is the mass matrix of the fermionic ~O fields, which must be adjusted to the 
observed mass values of  the fermions. The matrices of the mass squares of 
the gauge fields are defined by 

m(22)ab = 4~hvZ g~ N* r(a%)N = M2w6,b (3.9a) 

2 1 M2w g l  3 M(1,2)a = 47rh1)2glg2 ~ N * % N  = - - -  6a (3.9b) 
g 2  

M ~ I  , = , . ~ l o 2  g 2 -  M 2 w ( g l )  2 - \ g - ~ 2 /  ( 3 . 9 c )  

where N = (o) is chosen and 

M w  = ('rrh ) 1/21)g 2 (3.10) 
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Diagonalization of (3.9a)-(3.9c) yields the four eigenvalues 

M2w; M 2 ;  M2z=~rhvZ(g2+g2); 0 (3.11) 

with the corresponding eigenvectors 

W[; W2; Za=cwW3-swBa;  Ax=swW~+cwBx (3.11a) 

wherein Cw = cos 0w and Sw = sin Ow (Ow is the Weinberg angle). The field 
strengths belonging to (3.11a) are given by 

~A __ 1L',lv-A . V-A __ ~'2V-A F(w1) - J  (2) , e (w2) - ,  (2) 
F ~ ) _ ~  ~3~x ~ ~ ,a  (3.12) 

-- t ' W i  (2) - - ~ W  l ( 1 )  

F~,~) _ ~ w3~,~ - ~w~ (2) + ewF~() 
Herewith we obtain from (3.6a) and (3.6b), in view of  (3.9a)-(3.11), the 
gauge-field equations: 3 

D~,F~(#vl. b + (1 + q~)2 W 1'2~ = 4wj~i~(O) (3.13a) 

Dj, F(z) ~'~ +(1+~o) 2 Z"  =4~J(z)(O)'" (3.13b) 

D~,F(A) = 4r (3.13C) 

with the matter current densities corresponding to (3.12): 

j~z)( O ) = cwj~)( qJ) - swj~l)( O ) (3.14a) 

j~a)( O ) = Swj3(~)( O ) + cwj~I)( O ) (3.14b) 

In the same way we find from (3.7) for the Higgs field ~o 

M 2 M z 
0~, 0~'~o + " ~  q~ +~  ~ (3~2+ 3 )  

1 [~bLm,mn/l~R I P R m , m n / I P L  
~ .  ----~ -- A m "  nj  ..l_ ";" A m .  - -  nj 

2 1 14 ] 1 { g w ( W a W  + W~W2~)+g2zZaZX}(l+~o) (3.15) 
4wh J 

Obviously, in the field equations (3.5a), (3.5b), (3.13a)-(3.13c), and 
(3.15) the Higgs field r plays the role of an (attractive) scalar gravitational 
potential between the massive particles: According to equation (3.15), the 
source of  ~ is the mass of  the fermions and of  the gauge bosons W ~'2 and 
Z, 4 whereby this equation linearized with respect to ~o is a potential equation 

3The covariant derivative in (3.13a)-(3.13c) is defined by the covariant derivative of the 
right-hand side of (3.12) according to (2.9a). 

4The second term on the right-hand side of equation (3.15) is positive with respect to the 
signature of the metric. 
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of Yukawa type. Accordingly, the potential r has a finite range 

l= h/M (3.16) 

given by the mass of the Higgs particle, and v -2 has the meaning of the 
gravitational constant, so that 

v -2 = 4 7/'Gy (3.17) 

is valid, where G is the Newtonian gravitational constant and y a dimension- 
less factor, which compares the strength of the Newtonian gravity with that 
of the Higgs field and which can be determined only experimentally; see 
Section 5. On the other hand, the gravitational potential q~ acts back on the 
mass of the fermions and of the gauge bosons according to the field equations 
(3.5a), (3.5b), and (3.13a)-(3.13c). Simultaneously, the equivalence between 
inertial and passive as well as active gravitational mass is guaranteed. This 
feature results from the fact that by the symmetry breaking only one type 

i of mass is introduced. Evidently, the neutrinos PL and the photon A do 
not participate in this gravitational interaction. 

4. GRAVITATIONAL FORCE AND POTENTIAL EQUATION 

First we consider the potential equation from a more classical stand- 
point. With respect to the fact of a scalar gravitational interaction, we 
rewrite equation (3.15) with the help of the trace of the energy-momentum 
tensor, because this should be the only source of a scalar gravitational 
potential within a Lorentz-covariant theory. From (2.12) and (2.12a)- (2.12c) 
one finds after symmetry breaking 

T2 = T2(~b) + T~( W, Z, A) + T~(q~) (4.1) 

with T~(t#) given by (2.12a) and 

T~(W, Z,A)= T~(F)+4-~[M2w{(W~ WI~ + w2w2~ ) 

1 ~ ) 
- 5  ( wl~ + w] w2~ 

+ M2 {Z,Z"-16~Z~Z"}] (4.1a) 

[T~(F) according to (2.12b)] as well as 

T,~(~)=v 2 0,~o0 ~ - ' 5 6 ~  0 .q~0~,+~h--5( l+~)2(1-2~o-~ 2) (4.1b) 
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From this it follows immediately, using the field equations (3.5a) and 
(3.5b) that 

T =  Tx x = T(~b) + T(W, Z, A)+  T(~) (4.2) 

with 

- -  .',, m i n j  - -  A m .  n T( tp ) = [ OLmimnj ~b R + I~Rm~mn/ ~b'~](1 + ~0 ) ( 4 . 2 a )  

T( W, Z, A) = T( W, Z)  

1 
2 1 I A  ..{.. l ,  , 2  .'-I ,'-I X " I ,  -i _.I,_ _ ~ 2 / V I  ZL'AL'~ J ~, 1 ~ J [ M w( W W + W ) (4.2b) 

47rh 

and 

T(~o)=v2[-~h2(~o4+4~o3+4~2-1)-ax~ oa~o] (4.2c) 

In the appendix it is shown that T(qJ) separates, in total analogy to T( W, Z), 
into the masses of the single fermions: 

T(@)=E(me,~ei+m.,~,u'+ma.d~d')(l+~) (4.2a') 
i 

Comparing (4.2a) and (4.2b) with the right-hand side of the Higgs-field 
equation (3.15), one finds that the source of the potential r is given by the 
first two terms of the trace (4.2). In this way we find, using (3.17), 

M E 1 M E . 2 3. 
a~Y'~+--~-~,+~-~-(3~ +r ) 

= -4r + ~)- ' [  T(~) + T( W, Z)]  (4.3) 

In the linearized version (with respect to ~), equation (4.3) represents a 
potential equation for ~ of  Yukawa type with the trace of the energy- 
momentum tensor of the massive fermions and the massive gauge bosons 
W 1'2 and Z as source. 

Finally, we investigate the gravitational force caused by the Higgs field 
in more detail. Insertion of  the symmetry breaking according to (3.1)-(3.4a) 
into the first integral of the right-hand side of (2.15) yields 

k~,D - , , r  ~m.--,j+ r ~*~--,j~ --, KA = LL x@) I#RmeXnj'l#t IffLmiXnj qff RLIAq)J 
- -  - -  .'~ m .  n j  - -  A m .  n j  

- -  ( l[/Rm,m n/ ~ L + IPLm,mn/ l[I R )O X ~ 

+v(l+ t - -  ^ m .  n j  + - -  . t i n .  n j  ,p)[(D~N) kr162 L k$Lm,X.j '$RD~N] (4.4) 

- -  A m  i n j  Substitution of the conglomerate kt~R,,,,x,,j OL by the left-hand side of the 
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field equation (2.11) results, with the use of (3.3a) and (3.4a), in 

- A m , . ,  K~ = OLm, m.j OR + ORm,rn~'O~- " " 

1 2 1 W1,~ 2 W2,~)+M2zZ,~Z,~](I+~)}Ox~ -4zr--'~[Mw(W,~ + W,~ 

4~.hO. (1+~o) M w  W~W + W x W  2~ 

.(wlw'~ Z.Z 

~2 
+ i-~- (1 + ~)2{g2F~2)~..[N*z.D~'N - (D~'N)%.N] 

1 
+~ glF(1).;~[ Nt  D ' N -  ( D'N)* N]} (4.5) 

By insertion of (4.5) into the right-hand side of (2.15), the last brackets of 
(4.5) and (2.15) cancel out, whereas the second bracket of (4.5) can be 
combined with a~T~(F) to a~,T~( W, Z, A) according to (4.2b). In this way 
we obtain, neglecting surface integrals, at the spacelike infinity 

f [T~ T~ Z, A)] 
• 

dax 
ot 2 

f I -  ,'m njq_'r ^m.--nj = OLIn,ran/OR I/IRm,mn/~lL 

1 2 , Wl,~ 2 W2,~)+M2zZ,~Z,~}(I+r x -41r--'-~{Mw(W~ + W~ (4.6) 
J 

In total analogy to the procedure yielding the potential equation (4.3), we 
substitute the bracket of the 4-force in (4.6) by the traces T(0) and T( W, Z) 
given by (4.2a) and (4.2b), respectively; so we find 

o [T~ T~ d3x 

= f (1 + ~o)-1[ T(0) + T( W, Z)]ax~0 d3x (4.7) 
J 

Considering the transition from equation (2.15) to (2.17), we can 
express the time derivative of the 4-momentum of the gauge fields by a 
4-force acting on the fermionic matter currents. Restricting this procedure 
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to the massless gauge field A A (photon), we get from (4.7) 

L I [T~ z)] d3x 
Ot J 

= I  hF(A)x~J~A)(V,) d3x+ I (I+~)-I[T(V,)+ T(W'Z)]axcpd3x (4.8) 

Herein the first term of the right-hand side describes the 4-force of the 
massless gauge-boson acting on the matter fields, i.e., the electromagnetic 
Lorentz-force coupled by the electric charge [see (3.14b)] 

e = swg2 = cwgl (4.8a) 

The second term [identical with the right-hand side of (4.7)] is the attractive 
gravitational force on the masses of the fermions and of the gauge bosons 
W 1'2 and Z, which are simultaneously the source of the Higgs potential 
according to (4.3). This behavior is exactly that of classical gravity, coupling 
to the mass (---energy) only and not to any charge. However, the qualitative 
difference with respect to the Newtonian gravity consists, besides the non- 
linear terms in (4.3), in the finite range of ~ caused by the Yukawa term. 

5. F I N A L  R E M A R K S  

In the end we point out some interesting features of our result. First 
we note that, in view of the right-hand side of (4.7), it is appropriate to define 

l n ( l + ~ ) = X  (5.1) 

as the new gravitational potential, so that the momentum law reads 

~ I Ot [T~ T~ [T(V,)+ T(W'Z)]OAxd3x (5.2) 

Then the nonlinear terms concerning r in (4.3) can be expressed by T(r = 
T(X) according to (4.2c). In this way the field equation for the potential X 
(excited Higgs field) takes the very impressive form 

M 2 
O,O~ e2X+-~'e2X=-8~rG'y[T(V,)+ T(W,Z)+ T(x)] (5.3) 

Equations (5.2) and (5.3) are indeed those of scalar gravity with self- 
interaction in a natural manner. For the understanding of the Higgs field 
it may be of  interest that the structure of equation (5.3) exists already before 
the symmetry breaking. Considering the trace T of the energy-momentum 
tensor (2.12), one finds, with the use of the field equations (2.8a), (2.8b), 
and (2.11), 

0~, 0~'(~bt~b) + ($*~b) = - 2 T  (5.4) 
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with M 2= -2/~2h 2. Accordingly, the Yukawa-like self-interacting scalar 
gravity of the Higgs field is present within the theory from the very beginning. 
Equation (5.4) possesses an interesting behavior with respect to the sym- 
metry breaking. From the second term on the left-hand side there results 
in view of (3.1) in the first step a cosmological constant M2v2/h2; but this 
is compensated exactly by the trace of the energy-momentum tensor of the 
ground state. In our opinion this is the property of the cosmological constant 
at all, also in general relativity. 

Furthermore, we emphasize that the gravitational action of the Higgs 
field is not restricted to the Glashow-Salam-Weinberg model, but it is valid 
in all cases of mass production by symmetry breaking via the Higgs mechan- 
ism (Dehnen maL, 1990a), e.g., also in the GUT model. However, because 
in (3.16) the mass M is that of the Higgs particle, the range l of the potential 
~o should be very short, so that until now no experimental evidence for the 
Higgs gravity exists, at least in the macroscopic limit. For this reason it also 
appears improbable that it has something to do with the non-Newtonian 
gravity currently discussed as the so-called fifth force (Eckhardt et aL, 1988). 

Finally, the factor y in (3.17) can be calculated from (3.10) by the use 
of the mass of the W bosons and the value of the gauge coupling constant 
g2; one finds 

1 2{mPU 1032 
y -  4GM~v- ~ gE~ww, ] = 2 x  (5.5) 

(Mp is the Planck mass). Consequently, the Higgs gravity represents a 
relatively strong scalar gravitational interaction between the massive elemen- 
tary particles, with, however, extremely short range and with the essential 
property of quantizability. If any Higgs field exists in nature, this type of 
gravity is present. 

The expression (5.5) shows that in the case of a symmetry breaking 
where the bosonic mass is of the order of the Planck mass, the Higgs gravity 
approaches the Newtonian gravity if the mass of the Higgs particle is 
sufficiently small. In this connection the question arises, following Einstein's 
idea of relativity of inertia, if it is possible to construct a tensorial quantum 
theory of gravity with the use of the Higgs mechanism, leading at last to 
Einstein's gravitational theory in the classical macroscopic limit. 

A P P E N D I X  

In order to show the separation of T(qr into the single fermionic 
masses it is necessary to specify the fermionic mass matrix as follows 
[without suppression of the SU(2) indices /, J , . . .  ; note that in equation 
(A1) the sum convention does not hold]: 

A m .  A i m .  I m I i I - - l k  m . / -  m~./= Y~ (A1) m,~kS JS. ( U(z~)k( U<z~)j 
k 
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where 

,r~m~' - (~)k if ( I ,m)=(d ' ,q )  (A2) 
(t.J(c) ] k -- ( ~ k otherwise 

with the Cabibbo matrix U~c)k according to (2.3b). Insertion of (A1) into 
the right-hand side of (4.2a) yields 

iff ^m i -h id_ - ^m. nj L,,,mnj ,fir ~Rm~mn/ d/ L 
- + -  i + . - i + -  i =E [me (en,er eL,eR) mu'(UR, UL UL, UR) 

i 

-- i .jr -- i + md'(aR,dL aL,aR)] (A3) 

which immediately goes over into the expression (4.2a'). 
The mass-matrix (A1) follows from (3.8) after insertion of the Yukawa 

coupling matrix 
. , ,Rims ~ i_~t R h, r S R  i ~ m I i 

. ~ i  X y n j  , , . . . ImSZ~, , - , j o  n ~ , X l m k ( U ( c ) ) k ( U [ c ) ) f  l k  (A4) 
k 

where the real quantities xtm~ contain the masses 

kv 
m,,. k = - f  Xlmk { N t (  Cttrn + CIm)N} (A5) 

and Cxm is given by 

with 

cR ~C6~ for ( I ,m)=(u ,q ) ,  
~,,s = ( 6 s R otherwise 

C' = eiXC 

under hypercharge-transformation e iAY 
operator). 

(A6) 

(A7) 

(hypercharge-conjugation- 
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